Конспект урока по Алгебре «Решение задач на растворы, смеси, сплавы» 8 класс

Муниципальное бюджетное общеобразовательное учреждение

гимназия №19 им. Н.З. Поповичевой

г.Липецка

Решение задач на растворы, смеси, сплавы

Урок алгебры в 8 классе.

Учитель: Алябьева Е.А. (высшая категория).

Тема урока: «Решение задач на растворы, смеси, сплавы»

«В задачах, которые ставит перед нами жизнь, экзаменатором является сама природа»

У. Сойер

Тип урока. Комбинированный.

Формы организации учебной деятельности: фронтальная, индивидуальная, групповая (парная).

Методы организации учебной деятельности: словесный, наглядный, проблемный.

Цели урока.

Образовательные.

Проверить и закрепить умения и навыки в решении задач на растворы, смеси, сплавы.

Познакомить с нестандартным способом решения задач на смешивание двух растворов разной концентрации.

Развивающие.

Развитие интереса к предмету.

Активизация мыслительной деятельности.

Развитие научного мировоззрения, творческого мышления посредством создания проблемной ситуации.

Воспитательные.

Формирование навыков решения практических задач, используя математические знания.

Выработка внимания.

Оборудование: таблица 1 основных формул , таблица 2 к решению задачи на определение отношения смешиваемых растворов, проектор,

раздаточный материал – анкеты рефлексии.

Ход урока.

1. Организационно-мотивационный момент.

Учитель объявляет тему и цели урока.

Тема сегодняшнего урока «Задачи на растворы, смеси, сплавы». Вы уже знакомы с этими задачами, умеете решать многие из них, но сегодняшний урок необычный, потому что сегодня мы будем решать задачи на растворы, смеси, сплавы, которые ставит перед нами жизнь – практические задачи (прочесть эпиграф к уроку). Для решения этих задач вам необходимо будет сначала правильно сформулировать жизненную проблему как математическую задачу, а уже затем решить ее. Но так ли уж часто мы сталкиваемся с задачами на заданную тему в повседневной жизни? Чтобы ответить на этот вопрос, давайте представим один день обычной домохозяйки, назовем ее условно Хозяйка, и поможем ей решить все возникающие у нее проблемы.

2. Актуализация опорных знаний .

Контрольные вопросы фронтального опроса:

1. Какие типы задач на растворы, смеси, сплавы вы знаете?

2. Перечислите основные этапы решения задач на растворы, смеси, сплавы.

3. Какие величины обозначены: M, m, k ?

4. Назовите формулы для вычисления M, m, k –таблица 1(см. Приложение 1).

3. Решение задач.

3.1 Задача на соединение растворов, разбавление раствора.

(учащиеся знакомы с этими типами задач и умеют решать их по известному алгоритму)

Учитель: Итак, вернемся к нашей Хозяйке. День, о котором идет речь, случился в августе. С раннего утра Хозяйка решила заняться консервированием овощей.

Проблема 1 :

По рецепту Хозяйке было необходимо 300 г 12% раствора уксусной кислоты. Но у нее было лишь 200г 96% уксусной эссенции и 100г 6% раствора столового уксуса. Помогите Хозяйке решить эту проблему.

1.1.Математическая постановка задачи(задача на соединение растворов).

Сколько граммов 96% и 6% растворов уксусной кислоты необходимо соединить, чтобы получить 300г 12% раствора уксусной кислоты, если известно, что 96% раствора было 200г, а 6% – 100г?

1.2.Самостоятельное решение задачи.

1.3.Самопроверка результатов с обсуждением и анализом полученного ответа.

Учитель: Такой способ решения проблемы не дал нужного результата, так как соединив растворы уксусной кислоты указанных концентраций невозможно получить раствор 12% . Есть ли другой способ решения этой задачи? Какой? Измените математическую постановку задачи.

1.1.1Математическая постановка задачи (задача на разбавление раствора).

Сколько граммов воды нужно добавить к 200 г 96% раствора уксусной кислоты, чтобы получить 300г 12% раствора уксусной кислоты?

1.1.2.Самостоятельное решение задачи.

1.1.3.Взаимопроверка результатов с использованием готового решения на экране.

Учитель: Можно ли получить 12% раствор уксусной кислоты, смешав 6% раствор этой кислоты и воду?

3.2 Задача на нахождение пропорций смешиваемых растворов, сплавов.

(Новый для учащихся тип задач)

Учитель: После того, как консервирование было закончено, Хозяйка отправилась в салон красоты, где ей пришлось оказать помощь в решении новой проблемы.

Проблема 2:

Стилист попросил Хозяйку помочь ему решить следующую задачу: у нас в салоне имеется два раствора перекиси водорода 30% и 3% . Нужно их смешать так, чтобы получился 12% раствор. Не поможете ли нам подыскать правильную пропорцию?

2.1.Математическая постановка задачи

В каком отношении нужно смешать 30% и 3% растворы перекиси водорода, чтобы получить 12% раствор?

2.2.Обсуждение способа решения.

2.3.Запись решения на доске(один из учеников).

Учитель: Хозяйка решила эту проблему гораздо быстрее вас – всего за 1 минуту (демонстрация решения на доске):

I раствор: 30 9

12

II раствор: 3 18

Учитель: Можно ли данный способ использовать для решения задач на нахождение пропорций смешиваемых растворов? Обоснуйте данный способ решения. Используйте для обоснования Таблицу 2 (см. Приложение 2).

3.3 Закрепление решения нового типа задач.

(учащиеся познакомились с новым типом задач и умеют решать их по известной схеме)

Проблема 3 :

Из салона красоты Хозяйка отправилась к ювелиру, взяв с собой украшения из золота 375 и  750 пробы, и попросила ювелира изготовить ей кольцо 500 пробы. Помогите ювелиру определить пропорцию, в которой нужно соединить сплавы.

Повторить понятие «проба» (процентное содержание золота в 1000г сплава).

3.1.Математическая постановка задачи

Имеется два сплава золота с медью. Содержание золота в первом сплаве 37,5%, а во втором 75%. В каком отношении необходимо взять эти сплавы, чтобы содержание золота в новом сплаве было равно 50%?

3.2.Обсуждение способа решения.

3.3.Самостоятельное решение задачи.

4. Самостоятельная работа(задача от Хозяйки).

Имеется 90 г 80% уксусной кислоты. Какое наибольшее количество 9% столового уксуса из нее можно получить?

5. Подведение итогов урока.

Учитель: Решение каких типов задач на растворы, смеси, сплавы повторили на уроке?

Что нового узнали на уроке?

Ответьте на вопросы анкеты (см. Приложение 3).

6. Домашнее задание.

Составить и решить двумя способами задачу на определение пропорций смешиваемых растворов (сплавов).

Приложение 1.

Таблица 1.

M – масса всего раствора (сплава)

m – масса растворенного вещества

k – концентрация раствора

Приложение 2.

Таблица 2.

I раствор(х): a b –c

c

II раствор(у): b с– а

Приложение 3.

Анкета.

1. Испытывали ли вы затруднения при решении задач на растворы, смеси, сплавы?

а) да, решение задач на эту тему вызвало очень большие затруднения;

б) да, при решении некоторых задач;

в) нет.

2. Какой из уроков по теме понравился больше остальных и почему?

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. По пятибалльной системе оцените уровень ваших знаний по этой теме.

_________________________________________________________

4. Считаете ли вы, что умение решать задачи по этой теме пригодится вам в жизни:

а) да;

б) нет,

в) затрудняюсь ответить.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: